Journal of Organometallic Chemistry, 102 (1975) C31–C33 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

A NOVEL SYNTHESIS AND X-RAY STRUCTURE OF A NEW ARYLDI-AZENE COMPLEX: trans-(PHENYLACETYLIDE)BIS(TRIPHENYL-PHOSPHINE)(p-FLUOROPHENYLDIAZENE)PLATINUM(II) TETRA-FLUOROBORATE

U. CROATTO, L. TONIOLO*

Istituto di Chimica Generale ed Inorganica e di Chimica Inorganica Industriale, Università, Padova (Italy) A. IMMIRZI Istituto di Chimica delle Macromolecole del C.N.R., Milano (Italy) and G. BOMBIERI Centro di Chimica e Tecnologia dei Radioelementi-C.N.R., Padova (Italy) (Received September 22nd, 1975)

Summary

The title compound $[Pt(CCPh)(HNNC_6H_4F-p)(PPh_3)_2](BF_4)$ has been synthesized from $Pt(HC\equiv CPh)(PPh_3)_2$ and $p-FC_6H_4N_2BF_4$, and a mechanism for its formation is proposed; X-ray diffraction studies show that the acetylide ligand is σ -bonded and that the P—C=C—C system is essentially linear, while the diazene ligand has a *trans* configuration around the N=N bond, and the hydrogen-bearing nitrogen atom is coordinated to the platinum.

The chemistry and mode of coordination of aryldiazene transition metal complexes are receiving increasing interest [1, 2]. Until now they have been synthesized by insertion of an aryldiazonium cation into a M—H bond, or by protonation at the coordinated nitrogen of an aryldiazo complex [1].

The new title compound I has now been synthesized in a novel way from $Pt(HC \equiv CC_6H_5)(PPh_3)_2$ and p-FC₆H₄N₂BF₄ in benzene—ethanol at room temperature. I probably forms in two steps: (1) formation of a platinum(II) complex containing the reduced ArN=N⁻ ligand, as noted in the synthesis of "Pt(BF₄)(N₂Ar)(PPh₃)₂" (A) [3]; (2) formation of the Pt-C=CPh σ -bond, acetylenic hydrogen transfer to the diazo moiety, and *trans*-rearrangement to yield I. This suggestion is supported by the fact that treatment of separately prepared A with the alkyne yields I. The second step would be promoted by activation of the acetylenic C-H bond by the metal atom (Scheme 1).

SCHEME 1

The formation of I is related to the reverse of the synthesis of the starting complex $Pt(PPh_3)_2(PhC=CH)$ from *cis*- $Pt(PPh_3)_2Cl_2$ and phenylacetylene in the presence of hydrazine. However, in this synthesis the H-N=N⁻ species, unlike the related ArN=N⁻ entity which appears in Scheme 1, decomposes to molecular nitrogen and no C-H bond breaking occurs [4], as shown in Scheme 2.

SCHEME 2

The IR spectrum of I shows ν (C=C) at 2124 cm⁻¹ in agreement with data for other phenylacetylideplatinum(II) complexes [5]. There are several bands in the 1600-1400 cm⁻¹ region, where (N=N) usually occurs [2], but exact assignment by ¹⁵N-substitution has not been carried out. The ¹H NMR spectrum in CDCl₃ shows the nitrogen-bonded proton at τ -3.5 ppm, indicating its acid character [1].

Crystal data $[Pt(CCPh)(HNNC_6H_4F)(PPh_3)_2]BF_4$. Yellow prismatic crystals. Orthorhombic $P2_12_12_1a$ 25.638(3), b 16.250(2), c 13.050(2), Z = 4. Present R value 0.09. 2852 independent reflections collected between θ 3° and 25° using graphite-monochromated Mo- K_{α} radiation (λ 0.7107 Å) on a Philips Pw-1100 automated diffractometer.

The complex is square planar with the two triphenylphosphine ligands in *trans* relation. Figure 1 shows a view of the cation unit orthogonal to the coordination plane, together with some relevant bond lengths. The $C_6H_5C\equiv C$ ligand is σ -bonded to the metal through the C(1) carbon atom and the Pt-C \equiv C-C system is essentially linear: the angles on C(1) and C(2) are 178° and 172°, respectively. It is noteworthy that in PtCl(C \equiv CPh)(PPhEt₂)₂ the corresponding

Fig. 1. View of the cation $[Pt(CCPh)(HNNC_4H_4F)(PPh_3)_2]^+$ orthogonal to the coordination plane.

system is bent (162°) at the carbon atom bonded to the metal [6]. The $HN=N-C_6H_4F$ ligand has the *trans* configuration with respect to the N(1)-N(2) bond. The Pt-N(1) bond length 2.13(3) Å is significantly influenced by the *trans* C(1) atom, and is the same as that, viz. 1.973(7) Å, in [PtCl(HN=NC₆H₄F)-(PEt₃)₂](ClO₄) [2], where the chlorine exerts little *trans* influence [7]. The N(1)-N(2) bond length of 1.22(4) Å confirms the double bond character between N(1) and N(2), and agrees with that in [PtCl(HN=NC₆H₄F)(PEt₃)₂]-(ClO₄) [2].

References

- 1 G.W. Parshall, J. Amer. Chem. Soc., 87 (1965) 2133.
- 2 (a) S.D. Ittel and J.A. Ibers, J. Amer. Chem. Soc., 96 (1974) 4804;
- (b) B.L. Haymore, J.A. Ibers and D.W. Meek, Inorg. Chem., 14 (1975) 541.
- 3 L. Toniolo, J.A. McGinnety, T. Boschi and G. Deganello, Inorg. Chim. Acta, 11 (1974) 143.
- 4 J.H. Nelson, H.B. Jonassen and D.M. Roundhill, Inorg. Chem., 8 (1969) 2591.
- 5 I. Collamati and A. Furlani, J. Organometal. Chem., 17 (1969) 457.
- 6 C.J. Cardin, D.J. Cardin and M.F. Lappert, J. Organometal. Chem., 60 (1973) C70.
- 7 F. Basolo and R.G. Pearson, Mechanisms of Inorganic Reactions, A Study of Metal Complexes in Solution, J. Wiley & Sons, New York, London, 1967.